
International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 961
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A Virtualization Approach in Smart phone
Using Cloud computing for machine to

machine Communication.
1Naushad Ahmad Usmani 2Mohammed Waseem Ashfaque

1Department of IT,Buraimi University College,Buraimi,Oman
2Department of IT,Buraimi University College,Buraimi,Oman

ABSTRACT:- Virtualization allows instances of multiple operating systems to run concurrently on a single machine Its
means that separating hardware resource from a single operating system and Each “guest” OS is managed and looked
after by a Virtual Machine Monitor (VMM), also referred as hypervisor. Because the virtualization system lies between
the guest and the hardware resources, it can control the guests OS and use of all hardware resources like CPU,
memory, and storage, even guest OS are allowing to switch over from one machine to another. Virtualization and Smart
phone or mobile have been two of the greatest trends to hit up enterprises in IT sector. Virtualization from a server
perspective has been a disruptive force in the IT world, and these results into the form of VMware, one of the largest
software firm in terms of market cap. And hence all over 50% of servers are now being virtualized But implementing
some form of virtualization on mobile devices is not yet widely implemented in the enterprise market, and so small
companies offering their solution and services, it appears that virtualization on mobile is turning the corner and will be
heading towards widespread adoption.

Keywords: - Virtual Machine Monitors, Hypervisors, virtualization, cloud computing.

——————————  ——————————

Introduction:-
Over the last 10 years, the trend in the data
center has been towards decentralization, also
known as horizontal scaling. Centralized servers
were seen as too expensive to purchase and
maintain. Due to this expense, applications were
moved from a large shared server to their own
physical machine, often using commodity
hardware. Decentralization helped with the
ongoing maintenance of each application, since
patches and upgrades could be applied without
interfering with other running systems. For the
same reason, decentralization improves security
since a compromised system is isolated from
other systems on the network. However,
decentralization’s application sandboxes come at
the expense of more power consumption, less
physical space, and a greater management effort
which, together, account for up to $10,000 in
annual maintenance costs per machine1. In
addition to this maintenance overhead,
decentralization decreases the efficiency of each
machine, leaving the average server idle 85% of
the time2. Together, these inefficiencies often

eliminate any potential cost or labor savings
promised by decentralization. Virtualization is a
modified solution between centralized and
decentralized deployments. Instead of
purchasing and maintaining an entire computer
for one application, each application can be
given its own operating system, and all those
operating systems can reside on a single piece of
hardware. This provides the benefits of
decentralization, like security and stability,
while making the most of a machine’s resources.
Modern computers are sufficiently powerful to
use virtualization to present the illusion of many
smaller virtual machines (VMs), each running a
separate operating system instance. This has led
to a resurgence of interest in VM technology. In
this paper we present Xen, a high performance
resource-managed virtual machine monitor
(VMM) which enables applications such as
server consolidation [1,2], co-located hosting
facilities [3], distributed web services [4], secure
computing platforms[5,6] and application
mobility [7,8]. Successful partitioning of a
machine to support the concurrent execution of

IJSER

http://www.ijser.org/
http://www.forbes.com/companies/vmware/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 962
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

multiple operating systems poses several
challenges. Firstly, virtual machines must be
isolated from one another: it is not acceptable
for the execution of one to adversely affect the
performance of another. This is particularly true
when virtual machines are owned by mutually
untrusting users. Secondly, it is necessary to
support a variety of different operating systems
to accommodate the heterogeneity of popular
applications. Thirdly, the performance overhead
introduced by virtualization should be small. As
virtualization disentangles the operating system
from the hardware, a number of very useful new
tools become available. Virtualization allows an
operator to control a guest operating system’s
use of CPU, memory, storage, and other
resources, so each guest receives only the
resources that it needs,With virtualized
deployments, it is possible to treat computing
resources like CPU, memory, and storage as a
hangar of resources and applications can easily
relocate to receive the resources they need at
that time.
LITERATURE REVIEW:-
 The Approaches & Overviews:-
1) Virtualization comes in a variety of
implementations. In its basic form known as
“full virtualization” the hypervisor provides a
fully emulated machine in which an operating
system can run. VM Ware® is a good example.
The biggest advantage to this approach is its
flexibility: one could run a RISC based OS as a
guest on an Intel-based host. While this is an
obvious approach, there are significant
performance problems in trying to emulate a
complete set of hardware in software. Even with
painstaking optimization, it is very difficult to
get useful performance from a fully virtualized
environment.[9].
2)At the other end of the spectrum is the Single
Kernel Image (SKI), in which the host OS
spawns additional copies of itself. This kind of
virtualization can be found in Swsoft Virtuozzo
and Sun® Solaris® Zones. SKI can be thought
of as “lightweight” virtualization. While this
approach avoids the performance problems with
pure emulation, it does so at the expense of
flexibility. It is not possible, for instance, to run
different versions or even different patch levels
of a particular operating system on the same
machine. Whatever versions exist in the host,

that same software will be provided in the guest.
SKI also sacrifices the security and reliability
provided by other virtualization methods. If the
kernel is exploited, all OS instances resident on
the system will be compromised.[9].
3)“Para virtualization,” found in the
XenSource® open source Xen product, attempts
to reconcile these two approaches. Instead of
emulating hardware, paravirtualization uses
slightly altered versions of the operating system
which allows access to the hardware resources
directly as managed by the hypervisor. This is
known as hardware-assisted virtualization, and
improves performance significantly. In order to
retain flexibility, the guest OS is not tied to its
host OS. Drastically different operating systems
can be running in a hypervisor at the same time,
just as they can under full virtualization. In this
way, para virtualization can be thought of as a
low-overhead full virtualization [9].
Xen:- With the release of Xen 3.0, virtualization
reaches maturity. Xen is the first virtualization
solution to support Intel’s VT technology which
permits each guest OS to run at full processor
speed, with only 0.5% to 3.5% overhead
typically incurred by the virtualization process.
Guests can be migrated from one machine to
another in less than 100ms. Through the
hypervisor, operators can control the use of
CPU, memory, block, and I/O devices
dynamically.. Xen enables users to dynamically
instantiate an operating system to execute
whatever they desire. In the XenoServer project
[10, 11] we are deploying Xen on standard
server hardware at economically strategic
locations within ISPs or at Internet exchanges.
We perform admission control in this direction
elsewhere [12]; this paper focuses on the VMM
There are a number of ways to build a system to
host multiple applications and servers on a
shared machine. Perhaps the simplest is to
deploy one or more hosts running a standard
operating system such as Linux or Windows,
and then to allow users to install applications
being provided by conventional OS .More
importantly, such systems do not adequately
support performance isolation; the scheduling
priority, memory demand, network traffic and
disk accesses of one process impact the
performance of others.[13],Linux/RK [14],
QLinux [15] and SILK [16].[17] within the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 963
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

operating system. Performing multiplexing at a
low level can mitigate this problem, as
demonstrated by the Exo kernel [18] and
Nemesis [19] operating systems. Unintentional
or undesired interactions between tasks are
minimized. We use this same basic approach to
build Xen, which multiplexes physical resources
at the granularity of an entire operating system
and is able to provide performance isolation
between them. In contrast to process-level
multi plexing this also allows a range of guest
operating systems.
APPROACH & OVERVIEW(XEN):-
In a traditional VMM the virtual hardware
exposed is functionally identical to the
underlying machine [20]. Although full
virtualization has the obvious benefit of
allowing un modified operating systems to be
hosted, it also has a number of drawbacks. This
is particularly true for the prevalent IA-32, or
x86, architecture. Support for full virtualization
was never part of the x86 architectural design.
Certain supervisor instructions must be handled
by the VMM for correct virtualization, but
executing these with insufficient privilege fails
silently rather than causing a convenient trap
[21]. Efficiently virtualizing the x86 MMU is
VMware's ESX Server [22] dynamically
rewrites portions of the hosted machine code to
insert traps wherever VMM intervention might
be required. This translation
is applied to the entire guest OS kernel (with
associated translation, execution, and caching
costs) OS to better support time-sensitive tasks,
and to correctly handle TCP timeouts and RTT
estimates, while exposing real machine
addresses allows a guest OS to improve
performance by using super pages [23] or page
coloring [24]. We avoid the drawbacks of full
virtualization by presenting a virtual machine
abstraction that is similar but not identical to the
underlying hardware an approach which has
been dubbed para virtualization[25].We still the
discussion so far into a set of design principles:
1. Support for unmodified application binaries is
essential, or users will not transition to Xen.
Hence we must virtualized all architectural
features required by existing standard ABIs.
2. Supporting full multi-application operating
systems is important, as this allows complex

server con_gurations to be virtualized within a
single guest OS instance.
3. Paravirtualization is necessary to obtain high
performance and strong resource isolation on
uncooperative machine architectures such as
x86.
4. Even on cooperative machine architectures,
completely hiding the effects of resource
virtualization from guest OS risks both
correctness and performance. Firstly, Denali
does not target existing ABIs, and so certain
architectural features from their VM interface.
For example, Denali does not fully support x86
segmentation although it is exported (and widely
used1) in the ABIs of NetBSD, Linux, and
Windows[18]. Hence each virtual machine
essentially hosts a single-user single-application
unprotected operating system.. In Xen,[26], we
are unaware of any published technical details or
evaluation. Thirdly, in the Denali architecture
the VMM performs all paging to and from disk.
This is perhaps related to the lack of memory
management support at the virtualization layer.
Paging within the VMM is contrary to our goal
of performance isolation: [27]).Finally,In the
following section we describe the virtual
machine abstraction exported by Xen and
discuss how a guest OS must be modified to
conform to this.
Red Hat and Xen Adoption:- Given the current
level of performance and maturity, and the
possibilities it provides, Xen is the undisputed
leader in open-source virtualization. Dozens of
corporations and universities are involved in the
project, including Red Hat, IBM® , Oracle® ,
Intel® , AMD® , Cisco® , and Veritas® . Red
Hat has been an early adopter of Xen, an active
contributor, and has already incorporated the
code into its Fedora distribution. Xen is also a
crucial component of Red Hat Enterprise
Linux® 5. Virtualization is only one part of Red
Hat’s larger strategy to commoditize each major
computing component, and make it simple for
administrators to bring computing resources to
the application that needs them. With the advent
of the Global File System (GFS), storage is an
easily allocated resource and still delivers a high
level of performance. Red Hat Network (RHN)
allows administrators to treat systems as generic
resources that can be easily installed, upgraded,
asked, and reallocated.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 964
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The Virtual Machine Interface:- Table
represents an overview of the para virtualized
x86 interface, factored into three broad aspects
of the system: memory management, the CPU,
and device I/O. In the following we address each
machine subsystem in turn, and discuss how
each is presented in our para virtualized
architecture. Note that although certain parts of
our implementation, such as memory
management, are specific to the x86, many
aspects (such as our virtual CPU and I/O
devices) can be readily applied to other machine
architectures.
Memory management:- Virtualizing memory
is undoubtedly the most difficult part of para
virtualizing an architecture, both in terms of the
mechanisms required in the hypervisor and
modifications required to port each guest OS.
The task is easier if the architecture provides a
software managed TLB as these can be
efficiently virtualized in a simple manner.,
including Alpha, MIPS and SPARC.
Associating an address-space identifier tag with
each TLB entry allows the hypervisor and each
guest OS to efficiently coexist in separate
address spaces because there is no need to push
the entire TLB when transferring execution.
Unfortunately, x86 does not have a software-
managed TLB; instead TLB misses are serviced
[28].
CPU:-Virtualizing the CPU has several
implications for guest OSes. Principally, the
insertion of a hypervisor below the operating
system violates the usual assumption that the OS
is the most privileged entity in the system. In
order to protect the hypervisor from OS
misbehavior (and domains from one another)
guest OSes must be modified to run at a lower
privilege level. Many processor architectures
only provide two privilege levels. In these cases
the guest OS would share the lower privilege
level with applications. The guest OS would
then protect itself by running in a separate
address space from its applications, and
indirectly pass control to and from applications
via the hypervisor to set the virtual privilege
level and change the current address space.
Again, if the processor's TLB supports address-
space tags then expensive TLB, OS code
typically executes in ring 0 because no other

ring can execute privileged instructions, while
ring 3 is generally used for application code.
1. This prevents the guest OS from directly
executing privileged instructions, yet it remains
safely isolated from applications running in ring
3. Privileged instructions are para virtualized by
requiring them to be validated and executed
within, which would normally read the faulting
address from a privileged processor register
(CR2); since this is not possible, we write it into
an extended stack frame2. When an exception
occurs while executing outside ring 0, Xen's
handler creates a copy of the exception stack
frame on the guest OS stack and returns control
to the appropriate registered handler.
I/O Device:- Rather than emulating existing
hardware devices, as is typically done in fully-
virtualized environments, Xen exposes a set of
clean and simple device abstractions. This
allows us to design an interface that is both
efficient and satisfies our requirements for
protection and isolation. To this end, I/O data is
transferred to and from each domain via Xen,
using shared-memory, asynchronous buffer
descriptor rings.

Table 1: The par virtualized x86 interface.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 965
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

allowing Xen to efficiently perform validation
Checks (for example, checking that buffers are
contained within a domain's memory
reservation). Similar to hardware interrupts,
These callbacks can be `held off' at the
discretion of the guest OS. to avoid extra costs
incurred by frequent wake-up notifications.
Augmenting Smart phones through
Computational Clouds:- MCC implements a
number of augmentation procedures for
leveraging resources and services of cloud
datacenters. Examples of the augmentations
strategies include; screen augmentation,
energy augmentation, storage augmentation
and application processing augmentation of
SMD [29]. A number of online file storage
services are available on cloud server which
augments the storage potentials by providing
off-device storage services. Examples of the

cloud storage services include Amazon S3
and DropBox. Mobile users outsource data
storage by maintaining data storage on cloud
server nodes.. [30].Similarly, the computing
power of the cloud datacenters is utilized by
outsourcing computational load to cloud
server nodes. Off loading or cyber foraging.
Smart mobile devices implement process
offloading to utilize the computing power of
the cloud. The term cyber foraging is
introduced by Satyanarayanan[31].The
mechanism of outsourcing computational
load to remote surrogates in the close
proximity is called cyber foraging [32].
Researchers extend process offloading
algorithms for Pervasive Computing [33],
Grid Computing [34] and Cluster
Computing [35]. In recent years, a number
of cloud server based application offloading
frameworks are introduced for outsourcing
computational intensive components of the
mobile applications partially or entirely to
cloud datacenters. Mobile applications
which are attributed with the features of
runtime partitioning are called elastic mobile
applications. Elastic applications are
partitioned at runtime for the establishment
of distributed processing platform.

Figure 1: for cloud system architecture

APPROACH FOR SMART PHONE:- The
current approaches for SMDs employ a
number of strategies for the establishment of
runtime distributed application execution
platform. This section provides thematic
taxonomy for current approaches and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 966
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

reviews the traditional approaches on the
basis of framework nature attributes of the
taxonomy. Further, it investigates the
advantages and critical aspects of current
approaches for SMDs. A classification of
application offloading frameworks by using
their attributes is shown in Fig. 3. This
section analyzes current application
offloading frameworks and investigates the
implications and critical aspects of current
approaches[36].
VIRTUALIZATION OF NETWORK:-
Network virtualization enables multiple logical
networks to share the physical resources of the
underlying network infrastructure. This network
model introduces flexibility to the Internet
ossification by separating the network
architecture functionalities into the following
entities:
• Network Infrastructure (NI): provides the
physical components required to setup the
network (e.g., routers and links). NI efficiently
allocates the required network bandwidth
and physical resources.
• Virtual Networks (VN): deploy customizable
network protocols by leasing the required
infrastructure resources from multiple NIs. Each
virtual network is a combination of multiple
virtual routers and links. When initiating a
service, the VN confines to the Service Level
Agreements (SLA) with set of NIs and receives
the requested resources [36].
• End Users: are similar to the current Internet
architecture but have the opportunity to choose
from multiple virtual network services.
For any virtual network, the above architectural
separation reduces the cost involved in setting
up the physical resources and maintaining them.
This three-tier architecture promises to introduce
flexibility through programmability, improved
scalability and reduction in maintenance costs.
two virtual networks sharing the network
infrastructure resources[36]. Both VNs deploy
their customized network services on the shared
infrastructure components and establish end-to
end connectivity between end users. The VN
assumes inherent provision of security features
by the hosting NI and is oblivious to the
malicious activities of the infrastructure[36].
 Security Issues in virtualized Networks:-

Network security is an important challenge to be
addressed when adapting to new architectural
innovations Figure shows the possible
combinations in which attacks can compromise
different entities in the architecture. For
example, (1) indicates the scenario when a
malicious VN service launches attacks on the
end users[36].
Developing the mobile phone application and
cloud servlets:- To build the application Eclipse
IDE was used because of its good support for
Java development and easy integration with
Android SDK and Google App Engine SDK.
The build started out by developing the three
tests and to execute them in a Java environment.
When they were completed the timer class was
developed to measure how many milliseconds
each test took to execute, Appendix 3. When the
tests and timer class were completed, three
servlets were developed and uploaded to Google
App Engine as separate applications.The list
sorting tests required a text file of words to be
uploaded and then sorts and outputs the list in
alphabetical order. The image transformation
test required an image to be uploaded, which are
transformed and returned. Because the
application already executed all tests
automatically the application would only need to
load, execute and upload the results, When
starting the application
a loading screen is displayed while the text list
and other features are loaded into the memory
of the mobile phone. When this is done a start
and an exit button are displayed. The start button
executes the tests and displays the progress of
which test is being executed. The exit button
quits the application. To measure the bandwidth
ratio the phone connection type was registered
and a class that uploads and downloads the
image in a class that uploads and downloads the
image in the Assets folder was created [37].
Figure Screenshots from the start screen and
from the execution of the application.
The application worked properly but in case
something went wrong eventual error messages
was saved. In addition, a control test was
included which would make sure that the three
tests got the right results, for example when the
1500 words were sorted in alphabetical order the
Number hundred word had to be the correct one.
To increase the security of the servlets and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 967
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Prohibit the possibility to send false results,
numerical keys were generated and were
required to execute the tests on Google App
Engine. Every time the application runs it sends
a password to the servlet, allowing it to be used.
Finally the results from the tests, the information
about phone model etcetera were uploaded and
saved in a database at Google App Engine [37].

Figure 2: Screenshots from the start screen and from

the execution of the application
Application walkthrough:-

Figure 3:The following steps constitute the
application:The application icon is pressed on the

mobile phone.
2. The loading screen is shown:-
a) The application gathers the mobile phone
information.
b) The application gets the text file from the
Assets folder and loads it into memory.
c) The application gets the image file from the
Assets folder and loads it into memory [37].

.
Figure 4: The start and exit button is shown which

gives the possibility to start the tests or exit the
application

Challenges in Virtual networks:-
Virtual networks introduce unique challenges
when compared with the traditional networking
requirements. identified with certain level of
data transparency between the hosted VNs and
the NIs. Our attack scenarios indicate that the
underlying infrastructure can introduce biased
management practices, monitor confidential
information, or launch hidden attacks. Hence the
problem of identifying a mechanism to securely
process the packets without exposing the input
data is required.
• Global Connectivity:- To setup end to end
network connectivity, the virtual network
service should partner with multiple
infrastructure providers with varying levels of
agreements and requirements.
• Forwarding Rate:- High data rate forwarding
requirements in the routers imposes significant
challenge when extra processing is introduced
by the security mechanisms. Most services
require certain level of Quality of Service such
as low latency with reliable packet processing.
To meet such demands, the computation
complexity introduced by the proposed security
mechanisms should ensure that the forwarding
data rate is not compromised. To address the
above challenges, a secure system should
provide the following fundamental principle.
 Defense Mechanism: Confidentiality:-
The mutual distrust between the participating
entities in the network virtualization architecture
raises the question of confidentially and privacy
of the processed data. Considering. Encrypted
Protocol Processing. the possible vulnerabilities
as discussed in Section IV, the VN does not

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 968
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

want to expose the data packet (header and
payload) when processed by the NI. Encryption
techniques are effective to ensure the
confidentiality of the data traffic when processed
by third party network infrastructures. To avoid
biased management practices by ISPs, Bit
Torrent protocol versions introduced MSE based
protocol encryption that enhances privacy and
confidentiality[38][39][40].All processing
functions are performed in the encrypted domain
and hence the infrastructure is completely
oblivious to the data being processed
1) Trust and Accountability: Trusted
computing ensures consistency in expected
behaviors between participating entities.
[41] Proposes a trust management framework
that gathers feedback from past experiences of
hosting virtual network services and measures
the degree of involvement in terms of nodes and
links. [42] Proposes to modify the network
interface cards to support better detection
capabilities using processor extensions and
shows inherent assurance of a trusted,
accountable platform. Considering the attack
space discussed in Section the above solutions
lack the dynamics to adapt and protect from
attacks. Ideally a monitoring scheme that
dynamically tracks the working of the entities in
runtime is suitable to ensure effective
information integrity provision.
2) Monitoring: To identify the biased
monitoring practices introduced by ISPs, [43]
uses causal inference techniques by passively
collecting performance data from clients. To
isolate malicious routers, [44] uses a distributed
detection technique involving neighboring
routers to identify the anomalous behavior of a
malicious router.
CONCLUSION:-
Now a day’s Various computing technologies
are enabled with Internet, wireless sensors,
personal computers, and mobile devices are
coming together to create machine-to-machine
communications. As Smart phone devices
carrying the approaches towards capabilities and
extensibility of standard desktop workstations
and servers, mobile devices are also beginning
to face many of the same security threats as
desktops and servers experience. In This paper
we tried to cover the concept about cloud
computing, and mobile cloud computing in

terms of Smart mobile computing and explained
the various approaches to reach nearer smart
phone resources based on availability of
resources in the cloud. It has been also discussed
that various challenges, issues for compatible
applications being distributed for machine to
machine. No doubt virtualization and clouding
has got a quit significant attention the recent
year.During our discussion security issues,
vulnerabilities in virtual network also brought
into our consideration. Though its mechanism
and design is quite different from the running
network and internet ,We hope that these
observations will provides a vital steps towards
more brief ideas which will carry towards its
real solution to secure network virtualization in
the forth coming year.
References:-
[1] C. A. Waldspurger. Memory resource
management in VMware ESX server. In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI
2002), ACM Operating Systems Review, Winter
2002 Special Issue, pages 181.194, Boston, MA,
USA, Dec. 2002.
2] Connectix. Product Overview: Connectix
Virtual Server, 2003.
http://www.connectix.com/products/vs.html
[3] Ensim. Ensim Virtual Private Servers, 2003.
http://www.ensim.com/products/materials/
datasheet_vps_051003.pdf.
[4] A. Whitaker, M. Shaw, and S. D. Gribble.
Denali: Lightweight Virtual Machines for
Distributed and Networked Applications.
Technical Report 02-02-01, University of
Washington, 2002.
[5] G. W. Dunlap, S. T. King, S. Cinar, M.
Basrai, and P. M. Chen. ReVirt: Enabling
Intrusion Analysis through Virtual-Machine
Logging and Replay. In Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI 2002), ACM Operating
Systems Review, Winter 2002 Special Issue,
pages 211.224, Boston, MA, USA, Dec. 2002
[6] T. Gar_nkel, M. Rosenblum, and D. Boneh.
Flexible OS Support and Applications for
Trusted Computing. In Proceedings of the 9th
Workshop on Hot Topics in Operating Systems,
Kauai, Hawaii, May 2003
[7] M. Kozuch and M. Satyanarayanan. Internet
Suspend/Resume. In Proceedings of the 4th

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 969
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

IEEE Workshop on Mobile Computing Systems
and Applications, Calicoon, NY, Jun 2002.
[8] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J.
Chow, M. S. Lam, and M. Rosenblum.
Optimizing the Migration of Virtual Computers.
In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation
(OSDI 2002), ACM Operating Systems Review,
Winter 2002 Special Issue, pages 377.390,
Boston, MA, USA, Dec. 2002.
[9]http://.xensource.com/files/xensource_wp
2.pdf
[10] K. A. Fraser, S. M. Hand, T. L. Harris, I.
M. Leslie, and I. A. Pratt. The Xenoserver
computing infrastructure. Technical Report
UCAM-CL-TR-552, University of Cambridge,
Computer Laboratory, Jan. 2003.
[11] D. Reed, I. Pratt, P. Menage, S. Early, and
N. Stratford. Xenoservers: accounted execution
of untrusted code. In Proceedings of the 7th
Workshop on Hot Topics in Operating Systems,
1999.
[12] S. Hand, T. L. Harris, E. Kotsovinos, and I.
Pratt. Controlling the XenoServer Open
Platform, April 2003.
[13] L. Peterson, D. Culler, T. Anderson, and T.
Roscoe. A blueprint for introducing disruptive
technology into the internet. In Proceedings of
the 1st Workshop on Hot Topics in Networks
(HotNets-I), Princeton, NJ, USA, Oct. 2002.
[14] S. Oikawa and R. Rajkumar. Portable RK:
A portable resource kernel for guaranteed and
enforced timing behavior. In Proceedings of the
IEEE Real Time Technology and Applications
Symposium, pages 111.120, June 1999.
[15] V. Sundaram, A. Chandra, P. Goyal, P.
Shenoy, J. Sahni, and H.M.Vin. Application
Performance in the QLinux Multimedia
Operating System. In Proceedings of the 8th
ACM Conference on Multimedia, Nov. 2000.
[16] A. Bavier, T. Voigt, M. Wawrzoniak, L.
Peterson, and P. Gunningberg. SILK: Scout
paths in the Linux kernel. Technical Report
2002-009, Uppsala University, Department of
Information Technology, Feb. 2002.
[17] D. Tennenhouse. Layered Multiplexing
Considered Harmful. In Rudin and Williamson,
editors, Protocols for High-Speed Networks,
pages 143.148. North Holland, 1989.
[18] M. F. Kaashoek, D. R. Engler, G. R.
Granger, H. M. Brice.no,R. Hunt, D. Mazi_eres,

T. Pinckney, R. Grimm, J. Jannotti, and K.
Mackenzie. Application performance and
exibility on Exokernel systems. In Proceedings
of the 16th ACM SIGOPS Symposium on
Operating Systems Principles, volume 31(5) of
ACM Operating Systems Review, pages 52.65,
Oct. 1997.
[19] I. M. Leslie, D. McAuley, R. Black, T.
Roscoe, P. Barham, D. Evers, R. Fairbairns, and
E. Hyden. The design and implementation of an
operating system to support distributed
multimedia applications. IEEE Journal on
Selected Areas in
Communications,14(7):1280.1297, Sept. 1996.
[20] L. Seawright and R. MacKinnon. VM/370 .
a study of multiplicity and usefulness. IBM
Systems Journal, pages 4.17, 1979.
[21] J. S. Robin and C. E. Irvine. Analysis of the
Intel Pentium's ability to support a secure virtual
machine monitor. In Proceedings of the 9th
USENIX Security Symposium, Denver, CO,
USA, pages 129.144, Aug. 2000.
[22] S. Devine, E. Bugnion, and M. Rosenblum.
Virtualization system including a virtual
machine monitor for a computer with a
segmented architecture. US Patent, 6397242,
Oct. 1998.
[23] J. Navarro, S. Iyer, P. Druschel, and A.
Cox. Practical, transparent operating system
support for superpages. In Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI 2002), ACM Operating
Systems Review, Winter 2002 Special Issue,
pages 89.104, Boston, MA, USA, Dec. 2002.
[24] R. Kessler and M. Hill. Page placement
algorithms for large real-indexed caches. ACM
Transaction on Computer Systems,
10(4):338.359, Nov. 1992.
[25] A. Whitaker, M. Shaw, and S. D. Gribble.
Denali: Lightweight Virtual Machines for
Distributed and Networked Applications.
Technical Report 02-02-01, University of
Washington, 2002.
[26] A. Whitaker, M. Shaw, and S. D. Gribble.
Scale and performance in the Denali isolation
kernel. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation
(OSDI 2002), ACM Operating Systems Review,
Winter 2002 Special Issue, pages 195.210,
Boston, MA, USA, Dec. 2002.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 970
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[27] S. Hand. Self-paging in the Nemesis
operating system. In Proceedings of the 3rd
Symposium on Operating Systems Design and
Implementation (OSDI 1999), pages 73.86, Oct.
1999.
[28] D. Engler, S. K. Gupta, and F. Kaashoek.
AVM: Application-level virtual memory. In
Proceedings of the 5th Workshop on Hot Topics
in Operating Systems, pages 72.77, May 1995.
[29] S. Abolfazli, Z. Sanaei, and A. Gani,
“Mobile cloud computing: A review on
smartphone augmentation approaches,” in Proc.
1st International Conference on Computing,
Information Systems and Communications,
2012.
[30] W. Zheng, P. Xu, X. Huang, and N. Wu,
“Design a cloud storage platform for pervasive
computing environments,” Cluster Computing,
vol. 13, pp. 141–151, 2010.
[31] M. Satyanarayanan, “Pervasive computing:
Vision and challenges,” IEEE Pers. Commun.,
vol. 8, no. 4, pp. 10–17, 2001.
[32] S. Goyal and J. Carter, “A lightweight
secure cyber foraging infrastructure for
resource-constrained devices,” in Mobile
Computing Systems and Applications, 2004.
WMCSA 2004. Sixth IEEE Workshop on.
IEEE, 2004, pp. 186–195.
[33] J. Oh, S. Lee, and E. Lee, “An adaptive
mobile system using mobile grid computing in
wireless network,” Computational Science and
Its Applications-ICCSA 2006, pp. 49–57, 2006.
[34] C. Li and L. Li, “Energy constrained
resource allocation optimization for mobile
grids,” Journal of Parallel and Distributed
Computing, vol. 70, no. 3, pp. 245–258, 2010.
[35] Y. Begum and M. Mohamed, “A dht-based
process migration policy for mobile clusters,” in
Information Technology: New Generations
(ITNG), 2010 Seventh International Conference
on. IEEE, 2010, pp. 934–938.
[36] Security Issues in Network Virtualization
for the Future Internet ,Sriram Natarajan and
Tilman Wolf, Department of Electrical and
Computer Engineering University of
Massachusetts, Amherst, MA, USA.
[37]Mobile phones and cloud computing A
quantitative research paper on mobile phone
application offloading by cloud computing
utilization.

[38] Message Stream Encryption, VUZE,
http://wiki.vuze.com/w/MessageStream
Encryption.
[39] B. B. Brumley and J. Valkonen, “Attacks
on message stream encryption,” in Proceedings
of the 13th Nordic Workshop on Secure IT
Systems— NordSec ’08, H. R. Nielson and C.
W. Probst, Eds., October 2008, pp. 163–173.
[40] C. Gentry, “Fully homomorphic encryption
using ideal lattices,” in Proceedings of the 41st
annual ACM symposium on Theory of
computing, ser. STOC ’09. New York, NY,
USA: ACM, 2009, pp. 169– 178. [Online].
http://doi.acm.org/10.1145/1536414.1536440
[41] L. Mekouar, Y. Iraqi, and R. Boutaba,
“Incorporating trust in network virtualization,”
in Proceedings of the 2010 10th IEEE
International Conference on Computer and
Information Technology, ser. CIT ’10.
Washington, DC, USA: IEEE Computer
Society, 2010, pp. 942–947. [Online]. Available:
http://dx.doi.org/10.1109/CIT.2010.174
[42] E. Keller, R. B. Lee, and J. Rexford,
“Accountability in hosted virtual networks,” in
Proc. of the First ACM SIGCOMM Workshop
on Virtualized Infrastructure Systems and
Architectures (VISA), ser. VISA ’09, Barcelona,
Spain, Aug. 2009, pp. 29–36.
[43] M. B. Tariq, M. Motiwala, N. Feamster,
and M. Ammar, “Detecting network neutrality
violations with causal inference,” in Proceedings
of the 5th international conference on Emerging
networking experiments and technologies, ser.
CoNEXT ’09. New York, NY, USA: ACM,
2009, pp. 289–300. [Online]. Available:
http://doi.acm.org/10.1145/ 1658939.1658972
[44] A. T. Mizrak, Y.-C. Cheng, K. Marzullo,
and S. Savage, “Detecting and isolating
malicious routers,” IEEE Transactions on
Dependable and Secure Computing, vol. 3, no.
3, pp. 230–244, Jul-Sep 2006.

IJSER

http://www.ijser.org/

	Introduction:-

